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Abstract

Resonance interfacial phenomena are studied in relation to forced plane vibrations of an elastic layer enclosed between

two half-spaces. Complex thickness resonance frequencies are examined for the system in question. An asymptotic

approach is developed to analyse ‘‘soft’’ and ‘‘hard’’ interfaces. The applicability of high-frequency long-wavelength one-

dimensional models is justified for describing thickness vibrations of a radiating interfacial layer. Numerical results are

presented that illustrate the efficiency of the proposed asymptotic expansions by comparing with the exact solution which

is expressed in terms of Fourier integrals.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The theory of wave propagation in layered media is a classical sub-area of continuum mechanics and
acoustics (see Refs. [1–4] and references therein). In the framework of this theory, the dynamic analysis of
elastic interfaces is of interest for many modern applications, including composite technology and geotechnical
engineering. Many of the publications on the subject are motivated by non-destructive evaluation for
structural elements, in particular, for adhesive joints (e.g. see Refs. [5–8]).

Our main aim is to obtain a deeper qualitative insight into resonance interfacial phenomena. The specific goal
is to consider forced vibrations of ‘‘hard/soft’’ interfacial layers characterising by small/large wave impedances
related to that of the environment (see formula (1) below). Since the degenerate model of a single layer with
traction free or fixed faces ignores the loss of vibration energy caused by the radiation into the environment, we
expect a near-resonance behaviour of a ‘‘hard’’ and ‘‘soft’’ layer that generates only a small radiation.

For elongated interfaces, the so-called thickness vibrations correspond to the only type of resonance
excitation. These vibrations are associated with one-dimensional (1D) eigenmodes of an infinitesimal
transverse fibre and are characterised by wavelengths along the interface that are greater than the layer
thickness; they have been investigated in a great detail for thin elastic plates and shells (e.g. see Refs. [3,9,10]).

To fix ideas we adopt a simple model plane problem in elasticity which is an infinite layer enclosed between
two half-spaces. For the sake of definiteness, forced vibrations are assumed to be induced by two ‘‘d-type’’
vertical forces applied symmetrically to the layer; the conditions of ideal elastic contact are imposed.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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The exact solution of this model problem is expressed in terms of Fourier integrals and an asymptotic
analysis near complex thickness stretch resonance frequencies is given in Section 5. The real parts of these
frequencies coincide with the limiting eigenvalues for a layer with traction free or fixed faces, whereas their
imaginary parts incorporate the effect of the radiation to infinity and become small both for ‘‘hard’’ and
‘‘soft’’ interfaces. The concept of a complex resonance frequency exploited within this paper is wide spread in
resonance scattering theory (e.g. see Ref. [11]).

Explicit asymptotic formulae are derived for resonance displacements and stresses based only upon the
contributions of long-wavelength components in the original Fourier integrals. It is remarkable that the same
formulae also follow from the 1D equations describing high-frequency long-wavelength vibrations of an
elastic layer radiating into softer or harder environment. These equations govern vibration modes with a slow
variation along the interface. At the same time associated frequencies are close to higher order cut-offs that
coincide with so-called thickness stretch resonance frequencies. The developed approach generalises previous
considerations reported in the above-mentioned papers Refs. [9,10] and the book Ref. [3]. The analysis of
high-frequency forced vibrations of an elastic plate in the case of a light fluid loading in Ref. [9] is particularly
relevant to the treatment below.

Numerical comparison with the exact solution demonstrates the high accuracy of the proposed asymptotic
expansions over a wide range of problem parameters both for resonance curves and spatial distributions of
displacements and stresses. These are especially useful for smoother loads that may suppress the considerable
effect of small-amplitude short-wavelength components.

2. Statement of the problem

We consider harmonic vibrations of elastic flat layer of thickness 2h enclosed by an infinite homogeneous
elastic continuum. Let the x3 ¼ 0 plane, in the Cartesian coordinate system ðx1; x2; x3Þ, be the mid-plane of the
layer with the Ox3 axis directed into the upper half-space x3X0 and two symmetrical ‘‘d-type’’ vertical forces
of amplitude A are applied to the interfaces at x3 ¼ �h (see Fig. 1). In this paper, we concentrate on the 2D
plane-strain problem assuming that the forces are uniformly distributed along the Ox2 axis.

We adopt the notation: nðiÞ are the Poisson ratios; rðiÞ are the densities; c
ðiÞ
1 and c

ðiÞ
2 are longitudinal and

transverse wave velocities, respectively (here, and below, i ¼ 1 for the infinite media and i ¼ 2 for the layer).
We also introduce the dimensionless quantities:

c� ¼
c
ð1Þ
2

c
ð2Þ
2

; r� ¼
rð1Þ

rð2Þ
; � ¼ c�r�; kðiÞ ¼

c
ðiÞ
2

c
ðiÞ
1

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2nðiÞ

2� 2nðiÞ

r
; ð1Þ

where the parameter � expressing the relative impedance of the layer is of particular importance.
Fig. 1. Transverse symmetric loading of interfacial layer.
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We define the displacements of the layer and the environment (e.g. see Ref. [12] for more details) in the form

v
ðiÞ
1 ðx1;x3Þ ¼

qfðiÞ

qx1
�

qcðiÞ

qx3
; v

ðiÞ
3 ðx1;x3Þ ¼

qfðiÞ

qx3
þ

qcðiÞ

qx1
, ð2Þ

where fðiÞðx1;x3Þ and cðiÞðx1; x3Þ are the Lamé potentials. These potentials satisfy the Helmholtz equations

DfðiÞ þ
o

c
ðiÞ
1

 !2

fðiÞ ¼ 0 (3)

and

DcðiÞ þ
o

c
ðiÞ
2

 !2

cðiÞ ¼ 0, (4)

where o is circular frequency (the common factor expðio tÞ is considered understood throughout and
henceforth is omitted); D is the plane Laplacian, i.e. D ¼ ðq2=qx2

1Þ þ ðq
2=qx2

3Þ.
The stresses are also expressed in the terms of these potentials fðiÞ and cðiÞ, in particular,

sðiÞ31 ¼ ðc
ðiÞ
2 Þ

2rðiÞ
o

c
ðiÞ
2

 !2

cðiÞ þ 2
q2fðiÞ

qx1qx3
þ 2

q2cðiÞ

qx2
1

2
4

3
5,

sðiÞ33 ¼ ðc
ðiÞ
2 Þ

2rðiÞ �
o

c
ðiÞ
2

 !2

fðiÞ þ 2
q2cðiÞ

qx1qx3
� 2

q2fðiÞ

qx2
1

2
4

3
5. ð5Þ

The continuity conditions on the interfaces x3 ¼ �h, modelling an ideal elastic contact, are written as

v
ð1Þ
1 ¼ v

ð2Þ
1 ; v

ð1Þ
3 ¼ v

ð2Þ
3 ð6Þ

and

sð1Þ31 ¼ sð2Þ31 ; sð1Þ33 ¼ sð2Þ33 þ Af ðx1Þ; ð7Þ

where A is a constant, the function f ðx1Þ is a ‘‘d-type’’ force and is given by

f ðx1Þ ¼
b

pðx2
1 þ b2Þ

; ð8Þ

with small b (see Fig. 2).
In addition, the Lamé potentials fð1Þ and cð1Þ have to satisfy the radiation condition at infinity. For bulk

waves these are written as

qfð1Þ

qr
þ i

o

c
ð1Þ
1

fð1Þ ¼ o
1ffiffi
r
p

� �
and

qcð1Þ

qr
þ i

o

c
ð1Þ
2

cð1Þ ¼ o
1ffiffi
r
p

� �
; ð9Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
1 þ x2

3

q
.

Our main goal is to analyse resonance phenomena specific to a ‘‘hard’’ or ‘‘soft’’ interfacial layer, when the
parameter � in Eq. (1) is small or large, respectively. In the limit � ¼ 0, we arrive at a single layer with traction
free faces, whereas the limit �!1 corresponds to a single layer with fixed faces. For both of these limiting
cases, radiation into the infinite media does not occur and all the vibration energy remains within the interface.

3. Exact solution

First, we define the Fourier transform as

gF ða;x3Þ ¼

Z þ1
�1

gðx1; x3Þ exp �iO
x1

h
a

� �
dx1, (10)
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Fig. 2. ‘‘d-type’’ force (8) normalised by half-thickness h; ——, b ¼ h; ���, b ¼ 0:1 h; � � � � � �, b ¼ 5 h.
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with inverse

gðx1;x3Þ ¼
O
2ph

Z þ1
�1

gF ða;x3Þ exp iO
x1

h
a

� �
da, (11)

where gF ða;x3Þ is the Fourier transform of the function gðx1;x3Þ, a is dimensionless Fourier transform
parameter, O ¼ oh=c

ð2Þ
2 is the dimensionless frequency.

For some combinations of problem parameters the function gF possesses real poles. These may correspond
to both Stoneley-type and Lamb-type waves. The existence of canonical interfacial Stoneley waves in a
composite elastic half-space has been investigated by Cagniard [13]. The real poles associated with Lamb-type
waves with a sinusoidal distribution along the thickness are only a feature of a ‘‘soft’’ interface. In the case of
two real poles a ¼ �as the integration contour in (11) has to be deformed as it is shown in Fig. 3. As usual, the
shape of a deformed contour is motivated by the radiation condition for harmonic waves with the time
dependence expðio tÞ taking into consideration the wave direction.

Applying transform (10) in Eqs. (3) and (4) and taking into account the radiation condition (9) we obtain

fð1ÞF ¼ a
ð1Þ
1 exp �Oxð1Þ1

jx3j

h

� �
; cð1ÞF ¼ a

ð1Þ
2 exp �Oxð1Þ2

jx3j

h

� �
(12)

and

fð2ÞF ¼ a
ð2Þ
1 exp �Oxð2Þ1

x3

h

� �
þ exp Oxð2Þ1

x3

h

� �h i
,

cð2ÞF ¼ a
ð2Þ
2 exp �Oxð2Þ2

x3

h

� �
� exp Oxð2Þ2

x3

h

� �h i
, ð13Þ

where

xð1Þ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �

kð1Þ

c�

� �2
s

; xð1Þ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 �

1

c2�

s
,

xð2Þ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � ðkð2ÞÞ2

q
; xð2Þ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1
p

.
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(a)

(b)

Fig. 3. Integration contour for inverse Fourier transform (11): (a) x140; (b) x1o0.
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Here the branches of the functions xð1Þ1 , xð1Þ2 and related branch cuts in the complex plane are chosen to satisfy
the conditions

ffiffiffi
1
p
¼ 1 and

ffiffiffiffiffiffiffi
�1
p

¼ i.
The coefficients a

ðiÞ
j , with i; j ¼ 1; 2, in Eqs. (12) and (13) are found by applying the Fourier transform to the

contact conditions (6) and (7). The Fourier transform of the function f ðx1Þ in (8) isZ þ1
�1

f ðx1Þ exp �iO
x1

h
a

� �
dx1 ¼ exp �Ojaj

b
h

� �
. (14)

The right-hand side in Eq. (14) coincides with the transformed d function (dF ¼ 1) at b ¼ 0.
As a result, the exact solution of the problem is presented in the form of an integral (11). In particular, the

transverse displacement at the interface x3 ¼ h can be written as

v3ðx1; hÞ ¼
A

2prð2Þðcð2Þ2 Þ
2

Z þ1
�1

vF ðaÞ expðOðix1a� bjajÞh�1Þda, (15)

whereas the normal stress at the interface x3 ¼ h becomes

s33ðx1; hÞ ¼
AO
2ph

Z þ1
�1

sF ðaÞ expðOðix1a� bjajÞh�1Þda, (16)

where

vF ðaÞ ¼ g�1 �S
ð2Þ
1 S
ð2Þ
2 ða

2 � xð1Þ1 xð1Þ2 Þx
ð2Þ
1

h
�r�x

ð1Þ
1 ðC

ð2Þ
1 S
ð2Þ
2 a2 � C

ð2Þ
2 S
ð2Þ
1 xð2Þ1 xð2Þ2 Þ

i
ð17Þ
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and

sF ðaÞ ¼ g�1 C
ð2Þ
1 S
ð2Þ
2 ð1� 2a2Þ

n
� 2a4ð�1þ �c�Þ � xð1Þ1 xð1Þ2 � a2ð�1þ r� þ 2ð�1þ �c�Þx

ð1Þ
1 xð1Þ2 Þ

h i
� C

ð2Þ
2 S
ð2Þ
1 2a2 r� � 2ð�1þ �c�Þa2 þ 2ð�1þ �c�Þx

ð1Þ
1 xð1Þ2

h i
xð2Þ1 xð2Þ2

�r�C
ð2Þ
1 C

ð2Þ
2 xð1Þ1 xð2Þ2

o
, ð18Þ

with

g ¼ C
ð2Þ
1 S
ð2Þ
2 �a2 �1þ r� � 2ð�1þ �c�Þa2

� �2n
þ 1þ 2ð�1þ �c�Þa2
� �2

xð1Þ1 xð1Þ2
o

þ C
ð2Þ
2 S
ð2Þ
1 r� � 2ð�1þ �c�Þa2
� �2

� 4ð�1þ �c�Þ
2a2xð1Þ1 xð1Þ2

n o
xð2Þ1 xð2Þ2

þ r� S
ð2Þ
1 S
ð2Þ
2 xð1Þ2 xð2Þ1 þ C

ð2Þ
1 C

ð2Þ
2 xð1Þ1 xð2Þ2

� �
, ð19Þ

where S
ð2Þ
1 ¼ sinhðOxð2Þ1 Þ, S

ð2Þ
2 ¼ sinhðOxð2Þ2 Þ, C

ð2Þ
1 ¼ coshðOxð2Þ1 Þ, C

ð2Þ
2 ¼ coshðOxð2Þ2 Þ.

The complicated Fourier integrals (15) and (16) do not allow for an immediate qualitative insight. This
motivates a further asymptotic analysis of the original problem.
4. Thickness resonance frequencies

For the vertical interfacial excitation (7) we expect that the resonance phenomena of interest are related to
thickness stretch vibrations. These are characterised by complex natural frequencies arising from the 1D
problem for fðiÞðx3Þ (as before i ¼ 1; 2):

q2fðiÞ

qx2
3

þ
o

c
ðiÞ
1

 !2

fðiÞ ¼ 0, (20)

with

qfð1Þ

qx3

�����
x3¼�h

¼
qfð2Þ

qx3

�����
x3¼�h

(21)

and

�fð1Þð�hÞ ¼ c�f
ð2Þ
ð�hÞ, (22)

where

qfð1Þ

qx3
þ i

o

c
ð1Þ
1

fð1Þ ¼ 0. (23)

The formulated problem follows from the relations in Section 2 at cðiÞ ¼ qfðiÞ=qx1 ¼ 0 and A ¼ 0. It governs
stretch natural vibrations of a thin infinite fibre of the studied system (see Fig. 1).

For vibration modes symmetric in x3, we have from the 1D equations (20) and the radiation condition (23)
that

fð1Þðx3Þ ¼ C1 exp �i
o

c
ð1Þ
1

jx3j

 !
; fð2Þðx3Þ ¼ C2 cos

o

c
ð2Þ
1

x3

 !
; ð24Þ
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where C1 and C2 are constants. By substituting these solutions into the contact conditions (21) and (22) we
arrive at the transcendental equation

kð1Þ cosðkð2ÞOÞ þ i�kð2Þ sinðkð2ÞOÞ ¼ 0. (25)

Next, by using the complex decomposition O ¼ O0 þ iO1 we have that

cosðkð2ÞO0Þ kð1Þ coshðkð2ÞO1Þ � �kð2Þ sinhðkð2ÞO1Þ
� �

þ i sin kð2ÞO0

	 

�kð2Þ cosh kð2ÞO1

	 

� kð1Þ sinh kð2ÞO1

	 
� �
¼ 0. ð26Þ

The solution of the last equation becomes

O0 ¼ Lh
m; O1 ¼

1

kð2Þ
tanh�1

�

�0

� �
for �o�0 (27)

and

O0 ¼ Ls
m; O1 ¼

1

kð2Þ
coth�1

�

�0

� �
for �4�0, (28)

with Lh
m ¼ ðpð2m� 1ÞÞ=2kð2Þ, Ls

m ¼ pm=kð2Þ, m ¼ 1; 2; . . ., and �0 ¼ kð1Þ=kð2Þ. In these formulae Lh
m and Ls

m

denote thickness stretch resonance frequencies corresponding to the limiting cases of a layer with traction free
ðfð2Þð�hÞ ¼ 0Þ and fixed ðdfð1Þ=dx3jx3¼�h ¼ 0Þ faces, respectively (e.g. see Ref. [3]). The imaginary part O1 is
associated with the radiation to infinity and tends to zero for ‘‘hard’’ (�51) or ‘‘soft’’ (�b1) layers. For the
latter, we get from Eqs. (27) and (28), respectively

O1 �
1

kð1Þ
� ð�51Þ (29)

and

O1 �
kð1Þ

ðkð2ÞÞ2�
ð�b1Þ. (30)

As it might be expected, we have from Eqs. (27) and (28)

O1!1 as �! �0. (31)

In this case there is no reflection at the interfaces x3 ¼ �h (see also Fig. 4 illustrating the effect of the Poisson
ratio on the imaginary part).

It is important to note that the denominator (19) of the Fourier transforms vF ðaÞ and sF ðaÞ in Eqs. (17) and
(18) has a double zero pole at a ¼ 0 at the complex resonance frequencies given by formulae (27) and (28);
hence the related Fourier integrals diverge.

5. An asymptotic analysis

In this section, we concentrate on two practically important cases corresponding to ‘‘hard’’ and ‘‘soft’’
interfacial layers. As we have already mentioned, for the latter the parameter � in Eq. (1) may be assumed
small or large, respectively.

5.1. ‘‘Hard’’ layer

A typical frequency dependence for small � is displayed in Fig. 5. We clearly observe maxima near the
frequencies Lh

m given by formula (27) which correspond to a layer with traction free faces. These frequencies
are also characterised by wider peaks of the Fourier transform vF near a ¼ 0 (see Fig. 6). The numerical data
in Figs. 5 and 6 agree with the consideration above. In fact, the relevant Fourier integrals become nearly
divergent at the frequencies O ¼ Lh

m when the imaginary part O1 of complex stretch resonance frequencies
practically vanishes (see estimation (29)). This is due to the long-wavelength contribution corresponding
to small values of the parameter a. It should be noted that similar wide peaks may appear sometimes at
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Fig. 4. Imaginary parts of thickness stretch resonance frequencies versus � for nðiÞ ¼ 0:3 and �0 ¼ 1; ——, Eq. (27) for �o�0 and Eq. (28)

for �4�0; ���, Eq. (29) for �o�0 and Eq. (30) for �4�0.

Fig. 5. Real part of transverse displacement at x1 ¼ h, x3 ¼ h versus frequency for nðiÞ ¼ 0:3, r� ¼ 0:1, c� ¼ 0:1.

Fig. 6. Fourier transform (17) at O ¼ Lh
1 for nðiÞ ¼ 0:3, r� ¼ 0:1, c� ¼ 0:1; ——, real part; ���, imaginary part.

J. Kaplunov, A. Krynkin / Journal of Sound and Vibration 294 (2006) 663–677670
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none-zero values of the parameter a. These are also a feature of a fluid-loaded layer (e.g. see Ref. [9]) and
usually correspond to ‘‘non-regular’’ cut-offs that are not related to thickness resonance phenomena (see Ref.
[14] for more details).

Next, we specify the vicinities of the thickness resonance frequencies corresponding to a layer with traction
free faces as O ¼ Lh

m þ Z, where Z��. Then, neglecting secondary terms in the formula (17) at a��1=2 we get
vF ðaÞ ¼ v0F ðaÞ þ . . ., where

v0F ðaÞ ¼
�1þ ð�Zþ i�Þ cotðLh

mÞ

�Zþ i�=kð1Þ þ 1=2a2ThLh
m

þ . . . , (32)

with

Th ¼
1

ðkð2ÞÞ2
1þ

8ðkð2ÞÞ2 cotðLh
mÞ

Lh
m

" #
. (33)

The denominator of the Fourier transform v0F ðaÞ in formula (32) has the double zero pole a ¼ 0 at the value
Z ¼ i�=kð1Þ corresponding to the complex resonance frequencies (27) with the imaginary part approximated by
the formula (29) oriented to small �. As was stated above, the presence of the latter is caused by the radiation
into a softer environment.

By substituting the asymptotic behaviour (32) into the Fourier integral (15) and calculating the residues for
small complex poles of order Oð�1=2Þ we get v3ðx1Þ ¼ v03ðx1Þ þ . . ., where

v03ðx1Þ ¼
A

rð2Þðcð2Þ2 Þ
2

i expðLh
mðix1ah � bjahjÞh

�1
Þ

ahThLh
m

½�1þ ð�Zþ i�Þ cotðLh
mÞ�, (34)

with

ah ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðZ� i�=kð1ÞÞ

ThLh
m

s
.

It is remarkable that the asymptotic formula (34) might be immediately derived starting from the 1D
asymptotic model describing high-frequency long-wavelength motions of a ‘‘hard’’ layer radiating into the
environment. This model represents a perturbation in � to that for a layer with traction free faces (e.g. see Ref.
[3] for more detail) and is governed by the equation

Thh2

2Lh
m

q2v03
qx2

1

þ Z�
i�

kð1Þ

� �
v03 ¼

hAf ðx1Þ

Lh
mrð2Þðc

ð2Þ
2 Þ

2
½1þ ðZ� i�Þ cotðLh

mÞ�, (35)

written in terms of the long-wavelength amplitude v03 of thickness stretch vibrations. It can be easily verified
that the solution to this equation takes the form (34).

In conclusion, we mention that the case considered in this sub-section is similar to that of a plate under a
light fluid loading (see Ref. [9]). The point is that ‘‘extra’’ shear waves characteristic of an elastic environment
do not affect considerably the stretch vibrations of interest.
5.2. ‘‘Soft’’ layer

For a ‘‘soft’’ interfacial layer, �b1, we concentrate on the vicinities of the thickness stretch resonance
frequencies (28) corresponding to a layer with fixed faces (see also Fig. 7 displaying a Fourier transform (18)
for the interfacial stress characteristic of this case). Now, the parameter a is assumed to be a���1=2 and the
frequency O may be expressed as O ¼ Lh

m þ Z. Thus, we get from the formula (18) sF ðaÞ ¼ s0F ðaÞ þ . . ., where

s0F ðaÞ ¼
i=�½1þ ð�Zþ i=�Þ tanðLs

mÞ�

Zðkð2ÞÞ2=kð1Þ � i=�� 1=2a2TsLs
m

þ . . . , (36)
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Fig. 7. Fourier transform (18) at O ¼ Ls
1 for nðiÞ ¼ 0:3, r� ¼ 10, c� ¼ 10; ——, real part; ���, imaginary part.

J. Kaplunov, A. Krynkin / Journal of Sound and Vibration 294 (2006) 663–677672
with

Ts ¼
1

kð1Þ
1�

2 tanðLs
mÞ

Ls
m

� �
. (37)

The denominator here is related to the complex thickness resonance frequencies of a layer enclosed into a
harder environment (see Eq. (30)).

Finally, we have s33ðx1Þ ¼ s033ðx1Þ þ . . ., where

s033ðx1Þ ¼
AO
h�

expðLs
mðix1as � bjasjÞh

�1
Þ

asTsLs
m

½1þ ð�Zþ i=�Þ tanðLs
mÞ�, (38)

with

as ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½Zðkð2ÞÞ2=kð1Þ � i=��

TsLs
m

s
.

The associated high-frequency long-wavelength equation becomes

Tsh
2

2Ls
m

q2s033
qx2

1

þ Z
ðkð2ÞÞ2

kð1Þ
�

i

�

� �
s033 ¼

iAf ðx1Þ

�
1� Z�

i

�

� �
tanðLs

mÞ

� �
. (39)

In the limit �!1 it transforms to that for a layer with fixed faces (see Refs. [10,3]).

6. Numerical comparison

First, we compare the exact Fourier transforms vF ðaÞ and sF ðaÞ and their asymptotic analogues v0F ðaÞ and
s0F ðaÞ, both calculated at the thickness resonance frequencies Lh

1 and Ls
1, which correspond to ‘‘hard’’ and

‘‘soft’’ interfacial layers, respectively. Here, and below, we use the Poisson ratio nðiÞ ¼ 0:3 (i ¼ 1; 2). The graphs
in Figs. 8 and 9 demonstrate the efficiency of the asymptotics over the long-wavelength region (a51). The
sharp bend at a � 0:05 in Fig. 9 corresponds to the branch point a ¼ kð1Þ=c� of x

ð1Þ
1 which is outside of the

validity range of the long-wavelength asymptotics.
Typical resonant curves and spatial distributions of displacements and stresses are presented in Figs. 10–13

for the ‘‘d-type’’ force (8) with b ¼ h. All the displayed displacements and stresses are normalised by
A=ðprð2Þðcð2Þ2 Þ

2
Þ and AO=ph, respectively. The frequency dependences near the first limiting stretch resonance

frequencies Lh
1 and Ls

1 are demonstrated in Figs. 10 and 11. Figs. 12 and 13 illustrate resonance motions of the
interface x3 ¼ h. These are characterised by oscillating of the exact solution around the asymptotic ones. The
small superimposed short-wavelength oscillations cannot be captured by the proposed theory. All the figures
confirm the basic assumption regarding the major contribution of long-wavelength components near thickness
resonance frequencies. Thus, the use of the 1D models for ‘‘hard’’ and ‘‘soft’’ interfacial layers seems to be
justified.
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(a)

(b)

Fig. 8. Approximation of transformed displacement at O ¼ Lh
1 for r� ¼ 0:1, c� ¼ 0:1; ——, vF by Eq. (17); ���, v0F by Eq. (32): (a) real

part; (b) imaginary part.

(a)

(b)

Fig. 9. Approximation of transformed normal stress at O ¼ Ls
1 for r� ¼ 10, c� ¼ 10; ——, sF by Eq. (18); ���, s0F by Eq. (36): (a) real

part; (b) imaginary part.
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Numerical results for an interfacial layer with a relative impedance � ¼ �0 (see Eq. (31)) are presented in
Fig. 14. It is evident that such a layer cannot be treated either as a ‘‘hard’’ or as a ‘‘soft’’ one. The transverse
displacement is calculated by Eq. (15) with the same normalisation as before. As might be expected, we do not
observe now (see Fig. 14(a)) typical peaks in the vicinity of the frequencies Lh

m similar to those in Figs. 5 and 10
for a ‘‘hard’’ layer. In this case the imaginary part of thickness stretch resonance frequencies tends to infinity
(see Eq. (31)) and resonance vibrations are suppressed.
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(a) (b)

Fig. 10. Transverse displacement v3ðh; hÞ near first thickness stretch resonance frequency O ¼ Lh
1 for r� ¼ 0:1, c� ¼ 0:1, b ¼ h; ——, exact

solution (15); ���, asymptotic solution (34): (a) real part; (b) imaginary part.

(a) (b)

Fig. 11. Normal stress s3ðh; hÞ near first thickness stretch resonance frequency O ¼ Ls
1 for r� ¼ 10, c� ¼ 10, b ¼ h; ——, exact solution

(16); ���, asymptotic solution (38): (a) real part; (b) imaginary part.

(a) (b)

Fig. 12. Transverse displacements of interface x3 ¼ h at O ¼ Lh
1 for r� ¼ 0:1, c� ¼ 0:1, b ¼ h; ——, exact solution (15);���, asymptotic

solution (34): (a) real part; (b) imaginary part.
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(a) (b)

Fig. 13. Normal stress s3ðx1; hÞ of interface x3 ¼ h at O ¼ Ls
1 for r� ¼ 10, c� ¼ 10, b ¼ h; ——, exact solution (16); ���, asymptotic

solution (38): (a) real part; (b) imaginary part.

(a) (b)

Fig. 14. Interfacial layer with r� ¼ 1, c� ¼ 1, b ¼ h; ——, real part of (15); ���, imaginary part of (15): (a) transverse displacement at

x1 ¼ h;x3 ¼ h versus frequency; (b) transverse displacements of interface x3 ¼ h at first thickness stretch resonance frequency O ¼ Lh
1.
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Finally, we study the effect of the parameter b in Eq. (8) that characterises the distribution of external
forces. The transverse displacements of the interfacial layer are plotted in Figs. 15(a)–(b) for b ¼ 0:1h and 5h,
respectively. It is clear that the effect of small amplitude short-wavelength oscillations is greater if the force (8)
is close to the d-function. Hence, the efficiency of the proposed long-wavelength asymptotics is higher for
distributed loads, when the parameter b takes larger values, because of the dominant contribution of related
modes.
7. Concluding remarks

The developed theory of interfacial thickness vibrations is not restricted to the case of a flat infinite
layer presented in the paper. The 1D long-wavelength high-frequency approximations (35) and (39) have a
potential for various extensions to more complicated geometries, constitutive relations and contact
conditions.

The elementary formulae in Section 4 for complex stretch resonance frequencies represent an important
quantitative characteristic of interfacial dynamic behaviour. In particular, they may be useful for evaluating
the accuracy of the approximation of a ‘‘soft’’/‘‘hard’’ layer tending to the limit of a layer with traction
free/fixed faces.
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(a)

(c)

(b)

(d)

Fig. 15. Displacements of interface x3 ¼ h induced by ‘‘d-type’’ force (8); for r� ¼ 0:1, c� ¼ 0:1, O ¼ Lh
1; ——, exact solution (15); ���,

asymptotic solution (34): (a) real part for b ¼ 0:1h; (b) real part for b ¼ 5h; (c) imaginary part for b ¼ 0:1h; (d) imaginary part for b ¼ 5h.
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